A COMPREHENSIVE REVIEW OF THE LOCAL RISK-FACTORS ASSOCIATED WITH THE ETIOLOGY OF PERI-IMPLANT DISEASES

Mohammed Alshehri

1Dental Department, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
2DDS, PhD, Consultant in Cosmetic, Restorative and Implant Dentistry

Background: A variety of factors (local and systemic) have been associated with the etiology of peri-implant diseases.

Objective: The aim was to provide an overview of current literature regarding the local risk-factors associated with the etiology of peri-implant diseases.

Data sources: Indexed databases were searched till June 2016 using different combinations of the following key words: “bruxism”; “oral biofilm”; “peri-implant diseases”; “peri-implantitis”, “risk-factors” and “smoking”.

Study selection: Clinical studies assessing the local risk-factors associated with the etiology of peri-implantitis were included. Letters to the Editor, case-reports, case-series, in-vitro studies, studies on animal models and commentaries were excluded.

Data extraction: The pattern of the present comprehensive review was customized to primarily summarize the pertinent information.

Data synthesis: Poor bone density and volume are associated with the etiology of peri-implant diseases. Excessive plaque accumulation and history of periodontitis are core etiological factors associated with peri-implant diseases. The relative risk for peri-implantitis was significantly higher in patients with a previous history of periodontitis compared to peri-implantitis patients without a history of periodontal disease. Periodontopathogens associated with periodontitis have also been isolated from peri-implant sulci of patients with peri-implantitis. Peri-implantitis is most often manifested in patients with bruxism and tobacco smoking habit. Other factors associated with the etiology of peri-implant diseases include presence of cement excess and operator’s clinical experience. Bone quality and quantity, poor oral hygiene, smoking, bruxism, occlusal overloading, history of periodontitis and operator’s experience are common local factors associated peri-implant diseases.

Keywords: dental implant; osseointegration; bruxism; smoking; periodontitis.

ABSTRACT

Background: A variety of factors (local and systemic) have been associated with the etiology of peri-implant diseases. Excessive plaque accumulation and history of periodontitis are core etiological factors associated with peri-implant diseases. The relative risk for peri-implantitis was significantly higher in patients with a previous history of periodontitis compared to peri-implantitis patients without a history of periodontal disease. Periodontopathogens associated with periodontitis have also been isolated from peri-implant sulci of patients with peri-implantitis. Peri-implantitis is most often manifested in patients with bruxism and tobacco smoking habit. Other factors associated with the etiology of peri-implant diseases include presence of cement excess and operator’s clinical experience. Bone quality and quantity, poor oral hygiene, smoking, bruxism, occlusal overloading, history of periodontitis and operator’s experience are common local factors associated peri-implant diseases.

Keywords: dental implant; osseointegration; bruxism; smoking; periodontitis.

1. Introduction

Dental implants are an innovative replacement for traditional fixed and removable dental prostheses such as bridges and dentures, respectively. Numerous studies have reported implant success and survival rates of up to 100%. Nevertheless, with the increasing number of patients receiving dental implants, the prevalence of peri-implant diseases has also increased. Peri-implant diseases are categorized into two types namely, peri-implant mucositis and peri-implantitis. Peri-implant mucositis is characterized by soft tissue inflammation around the implant without any signs of alveolar bone loss. The clinical signs of peri-implant mucositis include bleeding on probing (BOP) and/or suppuration, which are usually associated with probing depth (PD) of at least 4 millimeters (mm) with no evidence of radiographic loss of bone. According to a consensus report from the 6th European Workshop on Periodontology, peri-implantitis is defined as the presence of inflammation of the peri-implant mucosa and concurrent loss of supporting alveolar bone. Mombelli et al. described peri-implantitis as a site-specific inflammatory condition, which displays clinical and radiographic features that
are similar to those in patients with chronic periodontitis. Data regarding the prevalence of peri-implantitis are inconsistent. In the study by Koldsland et al.,10 the prevalence of peri-implantitis ranged between 11.3% and 47.1%; whereas Mombelli et al.11 reported peri-implantitis in 20% of their study population during 5 to 10 years of follow-up. In the study by Zitzmann and Berglundh,6 the frequency of peri-implantitis varied between 28% and at least 56% of the participants and 12% and 43% of individual implants.

A variety of factors (local and systemic) have been associated with the etiology of peri-implantitis.12-16 The most common local factor that has been reported to trigger an inflammatory response around dental implants is the oral biofilm. Moreover, tissues around implants are also more susceptible to oral biofilm-associated infections that spread into the alveolar bone and may cause bone loss.17 Furthermore, a variety of destructive inflammatory cytokines have been identified in the peri-implant crevicular fluid of patients with peri-implantitis.18 These cytokines have been reported to aggravate peri-implant inflammation and bone loss.18 Although biologic differences exist between natural teeth and implants, Belibasakis19 suggested that peri-implantitis corresponds to periodontitis. Other local factors that have been associated with the etiology of peri-implantitis include quality and quantity of recipient bone, jaw location, tobacco smoking, history of periodontitis, bruxism, habitual alcohol consumption, implant surface topography and implant overloading. Nevertheless, the contribution of systemic factors such as immunosuppression (as observed in patients with acquired immune deficiency syndrome, osteoporosis, poorly-controlled diabetes mellitus and cancer) and the use of medications (such as bisphosphonates and corticosteroids) that have also been associated with the etiology of peri-implantitis cannot be disregarded.20-24

Considering the length of the review, the author reserved the present review to comprehensively review the local risk-factors associated with the etiology of peri-implantitis. With this background, the aim of the present comprehensive review was to provide an overview of current literature regarding the local risk-factors associated with the etiology of peri-implantitis.

2. Material and methods

2.1. Focused question

The focused question addressed was “What are the local risk-factors associated with the etiology of peri-implant diseases?”

2.2. Literature search strategy

PubMed/Medline, Scopus, EMBASE, ISI Web of knowledge and Google-Scholar databases were searched till June 2016 using the following key words: “bruxism”; “oral biofilm”; “peri-implant diseases”; “peri-implantitis”; “peri-implantitis”, “risk-factors” and “smoking”. Clinical studies assessing the local risk-factors associated with the etiology of peri-implant diseases were included (Figure 1).

2.3. Eligibility criteria

Results from only clinical studies were included. Letters to the Editor, historic reviews, case-reports, case-series, in-vitro studies, studies on animal models and commentaries were excluded. The pattern of the present comprehensive review was customized to primarily summarize the pertinent information (Figure 1).
A comprehensive review of the local risk-factors associated with the etiology of peri-implant diseases

3. Results
Local risk-factors associated with the etiology of peri-implant diseases are summarized in Figure 2.

3.1. Bone quality
Studies have reported that peri-implant bone loss is more often manifested in the maxilla, which is composed of less dense bone as compared to the mandible. It has also been suggested that compromised bone density is the most critical factor associated with peri-implant bone loss, whereas others suggest that both poor bone density and volume are associated with the etiology of peri-implant diseases and bone loss.

3.2. Poor oral hygiene
Studies from human biopsies have shown that peri-implantitis and periodontitis lesions have several features in common. One of such features is poor oral hygiene maintenance. The dental plaque is the core etiological factor that causes the development of oral biofilm around the teeth and dental implant surfaces. In the study by Serino and Ström, most of the implants with a diagnosis of peri-implantitis were associated with no accessibility and/or capability for appropriate oral hygiene measures. This study concluded that oral hygiene at the implant sites is most likely associated with the presence or absence of peri-implantitis. Moreover, studies have also reported that microbes residing in the oral biofilm such as Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Porphyromonas gingivalis, and Staphylococcus aureus (which are also associated with the etiology of periodontitis) play a role in the initiation of peri-implantitis. It is therefore predictable to find a significant relationship between peri-implant bone loss and poor oral hygiene. In this regard, it is imperative for oral healthcare providers to educate patients regarding the significance of regular oral hygiene maintenance and routine dental check-ups towards the establishment of peri-implant and periodontal maintenance.

3.3. History of periodontitis
It has been claimed that peri-implantitis is a common finding in patients with a history of periodontitis. Results from a systematic review and meta-analysis showed that the relative risk for peri-implantitis was significantly higher in patients with a previous history of periodontitis compared to peri-implantitis patients without a history of periodontal disease. However, in a recent study, Meyle et al. investigated the long-term clinical and radiographic parameters of osseointegrated implants in non-smoking patients with a previous history of chronic periodontitis. The results showed that patients with a previous history of periodontitis regularly attending an oral hygiene maintenance program displayed implant survival rates up to 100% after 5 and 10 years. Similarly, in a systematic review, Pesce et al. concluded that there is a lack of consensus regarding the role of periodontitis in the etiology of peri-implantitis. Nevertheless, since several periodontopathogens (such as Aggregatibacter actinomycetemcomitans, Prevotella intermedia and Porphyromonas gingivalis) associated with the etiology of periodontitis have also been isolated from peri-implant sulci of patients with peri-implantitis. In a recent study, Jorand et al. reported that Desulfovibrio fairfieldensis is one of the most relevant sulphate-reducing bacteria of the human oral cavity suspected to be involved in peri-implantitis and implant corrosion. It is arduous to disregard the hypothesis that peri-implantitis is more common in patients with a history of periodontitis.

3.4. Smoking
It is well-established that periodontal inflammation and marginal bone loss are more often manifested in tobacco smokers as compared to individuals not using tobacco in any form. Studies have also reported that cigarette smokers are more susceptible to develop peri-implantitis as

Figure 1. A diagrammatic presentation of the local risk factors associated with the etiology of peri-implant diseases
compared to non-smokers. In a systematic review and metaanalysis, Sgolastra et al.57 assessed the role of smoking as a risk factor for peri-implantitis. The implant-based meta-analysis showed a significantly higher risk of peri-implantitis in smokers (Relative risk: 2.1, 95% Confidence interval: 1.34-3.29, \(p = 0.001\)) than non-smokers. The mechanism behind peri-implant bone loss in smokers is most probably similar to periodontal bone loss. Tsiga61ida et al.52 proposed that smoking shapes the peri-implant microbiomes even in states of clinical health, by supporting a pathogen-rich community. Although the mechanisms by which smoking enhances alveolar bone loss are poorly understood; evidence suggests that smoking enhances bone loss by affecting the host response. Smoking has been reported to impair the function of neutrophils that cause decreased chemotaxis, phagocytosis, and adherence.56,59 Moreover, it has also been reported that smokers present a decreased oxygen tension in periodontal pockets that could favor anaerobic microbial colonization.62,61 The same mechanism could be associated with peri-implant diseases, such as peri-implant mucositis and peri-implantitis. It has also been suggested that there is a synergistic effect of tobacco smoking and carriage of interleukin-1 gene polymorphism that results in increased risk of peri-implantitis.63,64 Moreover, tobacco smoking has also been reported to jeopardize the outcomes of periodontal surgical interventions.64 Galindo-Moreno et al.65 reported that the rates of marginal bone loss around implants are significantly associated with smoking. Results from a recent systematic review and meta-analysis also reported a significantly higher risk of peri-implantitis in smokers as compared to non-smokers.66

3.5. Bruxism
There are only a limited number of case-reports that have associated the occurrence of peri-implantitis with bruxism. In a case-report, Merin RL67 described the case of a 63-year-old female patient with a history of bruxism who reported to the clinic with pain and discomfort around an implant placed in the tooth no. 30 position. Radiographic evaluation showed that this implant had significant peri-implant bone loss. The author observed that the peri-implant bone loss was associated with heavy occlusion on the implant restoration.67 The author performed an occlusal adjustment and a radiograph taken five months after occlusal adjustment showed significant repair of the lost alveolar bone.67 Similar results were reported in another case-report by Lin et al.68

3.6. Cement remnants
A conventional approach towards restoration of dental implant using fixed prosthesis is the use of cement-retained restorations. In the absence of occlusal screw access openings, cement-retained restorations are useful in enhancing the number of occlusal contacts and simultaneously improving aesthetics.69 However, inadequate removal of excessive cement at the time of implant cementation may lead to a complication, cement-induced peri-implantitis.70 The probability of cement to remain in the peri-implant sulcus is high when margins of the restoration are placed 1.5mm to 3mm subgingivally.70 In a recent systematic review, Pesce et al.71 appraised the currently available scientific evidence to assess the role played by cement excess and misfitting components on the development of peri-implantitis. The authors reported that there is a correlation between cement excess and the presence of peri-implant disease, particularly among patients with a history of periodontitis.71 The authors also emphasized that removal of excess cement by means of debridement helps resolve most of the symptoms of peri-implantitis.71 Similarly, in a retrospective clinical observational study of fixed implant-supported restorations, cement associated peri-implantitis was assessed.72 In this study, 71 patients with 126 implants were investigated. Cement residues were identified in 59.5% of the implants. BOP was observed in 80% of the implants and suppuration at 21.3% of the implants with excess cement. The results demonstrated that following removal of the excess cement and recementation, a 76.9% reduction in BOP occurred with no signs of suppuration at follow-up. However, according to Korsch and Walther,73 the frequency of undetected excess cement depends upon the type of cement used. Premier Implant Cement (PIC) tends to leave more undetected excess as compared to Temp Bond (TB) cement. In this regard, implants cemented with PIC tend to have a higher prevalence for peri-implant inflammation and cause a more severe peri-implant bone loss as compared to those cemented with TB.73

3.7. Occlusal overloading
Occlusal overloading is a major cause of biomechanical implant complications including fracture and/or loosening of the implant. Occlusal overloading (combined with plaque accumulation) may also disturb the intricate bond between the implant surface and bone thereby leading to peri-implantitis and, if left untreated, implant failure.74,75 Prevention of occlusal overloading is associated with performing comprehensive examinations, treatment planning, well-defined surgical and prosthetic treatments and regular maintenance. However, conflicting results have also been reported.77,78 In a study on dogs, there was no loss of osseointegration and/or peri-implantitis following a period of 8 months of excessive occlusal load on titanium implants.79

3.8. Interimplant distance
Studies have reported that the horizontal distance between two adjacent implants can also influence CBH.79-81 It has been reported that when two implants are placed adjacent to one another, the distance between them influences the degree of lateral bone loss and interproximal bone peak resorption.81 This phenomenon is
independent of the time of implant loading and surface characteristics.\(^{33}\) In a histomorphometric study, Elian et al.\(^{34}\) compared the effects of two interimplant distances (2 mm and 3 mm) on bone maintenance with bone level implants. The results showed that the interproximal bone loss measured from the edge of the implant platform to the bone crest was not different for interimplant distances of 2 mm or 3 mm. Moreover, according to Tarnow et al.,\(^{35}\) an interdistance of greater than 3 millimeters (mm) between two adjacent implants helps preserve the interproximal bone peak and results in an average bone resorption of 0.45 mm up to 3 years of follow up. However, under circumstances where the distance between the implants is less than or equal to 3 mm, the average resorption of the interproximal bone peak increases to 1.04 mm, which in turn compromises support for the interimplant papillae.\(^{35}\) Results by Tarnow et al.\(^{35}\) also demonstrated that when the distance from the base of the contact point to the crest of bone was 3 mm, 4 mm or 5 mm, the papilla was present almost 100% of the time; however, when the distance was 7 mm, 8 mm, 9 mm, or 10 mm, the papilla was mostly missing. To the author’s knowledge from indexed literature, the influence of interimplant distance on crestal bone loss around dental implants remains unclear.

3.9. Surgical skills and experience of operator

Surgical trauma and/or limited clinical experience have been considered as one of the most essential factors associated with the etiology of peri-implant diseases.\(^{36,37}\) It has been reported that peri-implant disease are more often manifested among authors who have placed less than 50 dental implants as compared to those who have placed more than 50 implants.\(^{36,37}\) Moreover, overheating of bone during implant placement procedures may result in osteonecrosis thereby inviting peri-implant diseases and even implant failure.\(^{38}\)

4. Recommendations

It is highly recommended that oral healthcare providers practicing implant dentistry should be aware of the risk factors associated with periimplant diseases. Adequate knowledge of such risk-factors may also be useful in selecting patients for future implant therapy. Simultaneously, it is imperative for healthcare providers to educate their patients (including those who have either received dental implants or those that are potential candidates for future dental implant therapy) about the detrimental effects of these risk-factors on the long-term success and survival of dental implants.

Conflict of interest and financial disclosure

The author reports no conflict of interest and there was no external source of funding for the present study.
A COMPREHENSIVE REVIEW OF THE LOCAL RISK-FACTORS ASSOCIATED WITH THE ETIOLOGY OF PERI-IMPLANT DISEASES

76. Chambrone L, Chambrone LA, Lima LA. Effects of occlusal over-
load on peri-implant tissue health: a systematic review of animal-mod-
77. Chang M, Chronopoulos V, Mattheos N. Impact of excessive occlu-
sal load on successfully-osseointegrated dental implants: a literature
78. Heitz-Mayfield LJ, Schmid B, Weigel C, Gerber S, Bosshardt DD,
Jonsson J, et al. Does excessive occlusal load affect osseointegra-
79. Elian N, Jalbout ZN, Cho SC, Froum S, Tarnow DP. Realities and
limitations in the management of the interdental papilla between im-
plants: three case reports. Pract Proced Aesthet Dent. 2003;15(10):737-
744; quiz 46.
Effect of interimplant distance (2 and 3 mm) on the height of inter-
2011;82(12):1749-1756.
81. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant dis-
82. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone
changes around titanium implants. A histometric evaluation of unload-
ed non-submerged and submerged implants in the canine mandible.
83. Elian N, Bloom M, Trushkowsky RD, Dard MM, Tarnow D. Effect of 3-
and 4-mm interimplant distances on the height of interimplant bone
crest: a histomorphometric evaluation measured on bone level dental
84. el Askary AS, Meffert RM, Griffin T. Why do dental implants fail? Part
85. el Askary AS, Meffert RM, Griffin T. Why do dental implants fail? Part
86. Morris HF, Manz MC, Tarolli JH. Success of multiple endosseous
dental implant designs to second-stage surgery across study sites. J
87. Friberg B, Jemt T, Lekholm U. Early failures in 4,641 consecutively
placed Branemark dental implants: a study from stage 1 surgery to the
1991;6(2):142-146.
88. Eriksson RA, Albrektsson T. The effect of heat on bone regenera-
tion: an experimental study in the rabbit using the bone growth cham-

CV
Dr. Alshehri graduated from the College of Dentistry, King Saud University in 2001. Academically, he has acquired a Certificate in Advanced Education in General Dentistry at the University of Southern California, School of Dentistry. Thereafter, Dr. Alshehri joined the SBARD Program wherein he obtained the Saudi Specialty Certificate in Advanced Restorative Dentistry. Subsequently, he was able to obtain a Certificate for Saudi Fellowship in Dental Implant and is currently a Fellow of International Team for Implantology (ITI).
Professionally, Dr. Alshehri has conducted multiple research projects, has obtained a number of patents and has made local and international presentations. Currently, Dr. Alshehri is a Consultant in Cosmetic, restorative and implant dentistry at College of Medicine and University Hospitals and board member of the Saudi Dental Society.

Questions

Peri-implant mucositis is characterized by
- a. Necrotizing gingival;
- b. Bone loss;
- c. Soft tissue inflammation;
- d. None of the above.

Peri-implantitis corresponds to periodontitis. However, it does not cause bone loss:
- a. Both statements are true;
- b. Both statements are false;
- c. The first statement is false but the second statement is true;
- d. The first statement is true but the second statement is false.

The risk factors of peri-implantitis include:
- a. Smoking;
- b. Poor oral hygiene;
- c. Bruxism;
- d. All of the above.

Occlusal overloading of the implant may be prevented by
- a. Using short implants;
- b. Using cement retained implants;
- c. Comprehensive examination and treatment planning;
- d. Using wide diameter implants.